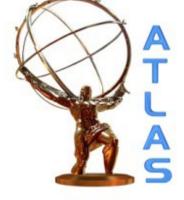
Detector-stable particle searches

Andy Haas

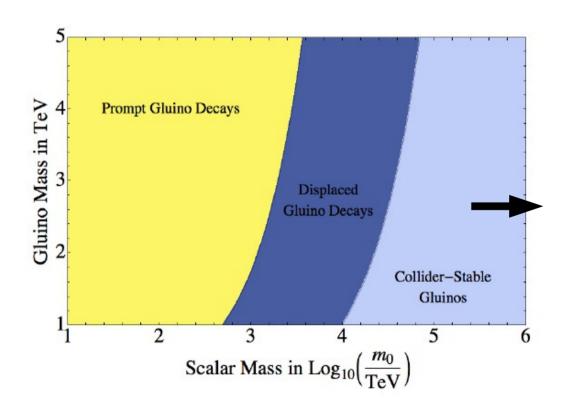

New York University

Snowmass Energy Frontier Workshop

BNL

April 3-5, 2013

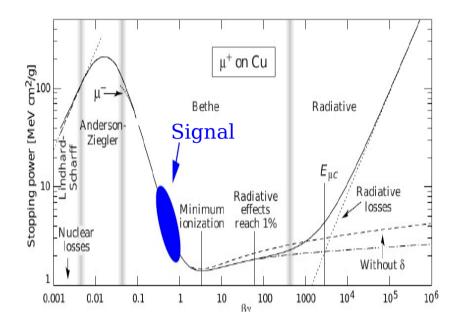
https://indico.bnl.gov/conferenceDisplay.py?confId=571

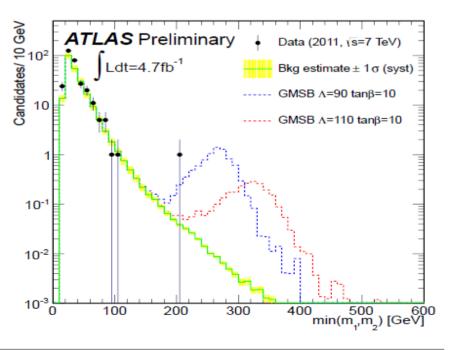


Introduction

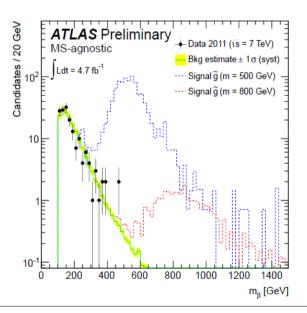
- New particles will either be
 - Prompt decays
 - Semi-stable, decay in detector
 - Detector stable, decay outside the detector (or get stopped in the detector and decay later)
- Must ensure sensitivity to detector-stable case!
- Very well-motivated
 - SUSY NLSP with small Δm
 - Split / mini-split SUSY
 - Magnetic monopoles

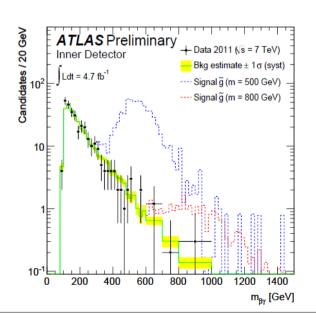
- ...

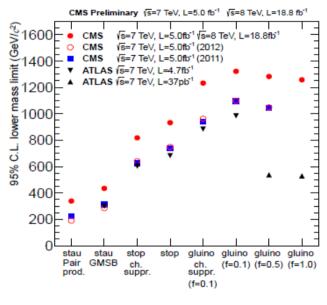

Benchmark scenarios

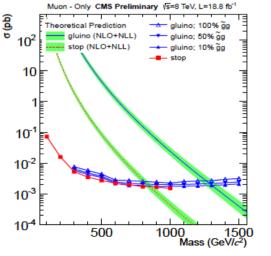

- 1) Colored (gluino, stop, sbottom)
 - Pair-produced via strong interaction (hadron collider) or DY (lepton collider)
 - Clearly a hadron collider will be better thanks to $\alpha_{Strong}/\alpha_{EM}$
 - Hadronizes into "Rhadron"
 - May be electrically charged or neutral at production (hadron collider)
 - Charge exchange through nuclear interactions with detector material
 - "Generic, Regge, or Intermediate" benchmark Rhadron spectra / interaction models
 - a) Escapes detector
 - generally the discovery channel
 - b) Stops in detector (~10% of the time) and decays later
 - important for measuring properties: lifetime, decay channels, etc.

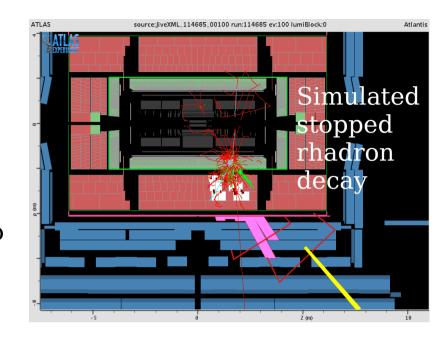
Benchmark scenarios

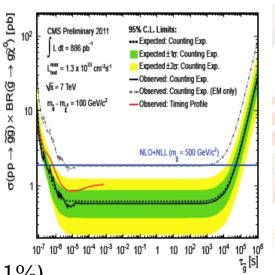

- 2) Not colored, but electrically charged (stau, chargino, ...)
 - Pair-produced via DY (hadron or lepton collider)
 - Escapes the detector
 - Only a very small fraction would stop in the detector, unless they could be produced near threshold (lepton collider?)
- 3) Monopole ? (anyone covering this?)
 - Pair-produced via DY (hadron or lepton collider)
 - Large electric charge ~ 68.5 e
 - Anomalous bending in magnetic field
 - Deposits energy in detector and stops, never decays

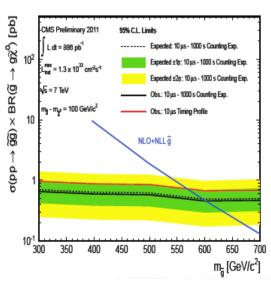

- 2) Charged stable heavy particles
 - LHC currently has the best sensitivity
 - "Slow muon" signature
 High-pt central track (>~50 GeV)
 - Isolation from other high-pt tracks and jets
 - Measure velocity of track via
 - dE/dx (inverting Bethe-Block) (measured best in silicon)
 - Precise timing (measured in calorimeters and muon systems)
 - Trigger on muon track or MET
 - Background: mis-measured leptons
 - m(stau)>~350 GeV


- 1a) Rhadrons
 - LHC also currently has the best sensitivity
 - More complicated signature, may
 - become neutral in detector
 - Inner-track only + calorimeter timing
 - Inner-track only (use dE/dx only)
 - start neutral, become charged in calo
 - Muon-track only
 - m(stop)>~800 GeV, m(gluino)>~1200 GeV

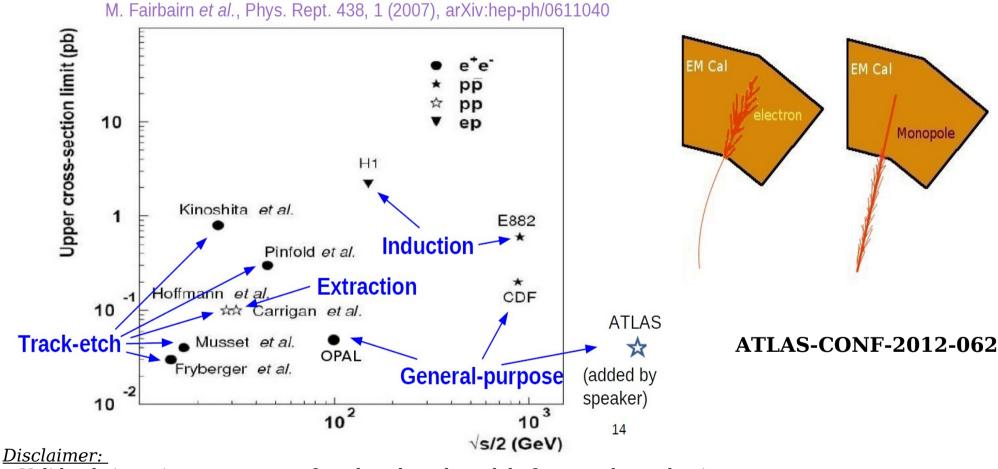



ATLAS-CONF-2012-075


CMS PAS EXO-12-026



- 1b) Stopped Rhadron
 - ~10% stop in calorimeters
 - Look for decay during "empty" bunch crossings (abort gap, etc.)
 - Backgrounds: cosmics, beam-halo
 - CMS limits:
 m(gluino)>~600 GeV
 m(stop)>~340 GeV
 for lifetimes of
 ~10⁻⁵ 10³ seconds
 - Much weaker than escaping Rhadron limits, but can see decay!
 - Important consideration for next experiments?
 - Sensitive to rare stopping (~1%) of always-neutral Rhadron?



Monopoles

- Sensitivity to some models at LHC, important for future experiments?

Valid only in a given mass range for a benchmark model of monopole production. Monopole with charge equal to the Dirac charge.

Simulation

- 1) Rhadron production and decays supported in Pythia 6 and 8
- 2) DY of stable, charged particles supported by many generators
- 3) Monopoles supported by many generators
- Rhadron and monopole energy loss / interactions supported by Geant4 extensions
 - No support in fast-detector simulators
 - Can mock-up some dE/dx and timing measurements / resolutions?
 - Tune to current LHC searches
- Generate various accelerator scenarios and compare expected sensitivities
 - Assume similar detector layouts, dE/dx and timing resolutions?
 - Study effects of machine backgrounds on resolutions and tails of dE/dx and timing?